Applications to Butler-Volmer equation, Chapter 3

Practical numerical application:

 $|\eta| > 0.1 V$ Tafel:

Anodic current for +ve η ; $i = i_0 \exp\{(1 - \alpha) \eta F/RT\}$

Cathodic current for -ve η ; $i = i_0 \exp\{-\alpha \eta F/RT\}$

 $|\eta| < 0.01 \text{ V}$ Charge transfer resistance

$$i = 2i_0 sin (F\eta/2RT) \approx 2i_0 (F\eta/2RT) = i_0 (F\eta/RT)$$

For $\eta \approx 0.01 \text{ V} - 0.1 \text{ V}$

=> Use the BV-equation. The BV equation can be used as is for any case.

Exercise 1

Calculate the ratio of the rates of the reaction: $Ag^+ + e^- \rightarrow Ag$ at:

- a) $\eta = -0.15V \& \eta = 0.15 V$.
- b) $\eta = -0.2V \& \eta = 0.2 V$.

Assume room temperature at 25°C.

Exercise 2

For an overpotential of η = 10 mV, a current I = 0.62 mA is passed through a 2 cm² Pt electrode for a H⁺/H₂ half reaction given as: H⁺ + e⁻ $\rightarrow \frac{1}{2}$ H₂.

What will be the current density i for (a) η = 100 mV? (b) η = -100 mV?

Assume the symmetry factor as 0.5 and a room temperature of 25°C

Exercise 3

The exchange current density of a Pt electrode for the H⁺/ H₂ half reaction is i₀ = 0.79 mA.cm⁻² at 25°C. Calculate the current density across it when the over potential is (a) $\eta = 10$ mV (b) $\eta = -200$ mV.

Exercise 4

Calculate the effective resistance across 1 cm² of

- a) Pt, H_2 , H^+ ; $i_0 = 0.79 \text{ mA.cm}^{-2}$
- b) Hg, H_2 , H^+ ; $i_0 = 0.79 \times 10^{-12} \text{ A.cm}^{-2}$

What conclusion you can draw from the result?

Exercise 5

In an experiment involving Pt, H_2 , H^+ electrode, the following data were obtained at 298 K. Determine α and i_0

η/mV	50	100	150	200	250
i / mA·cm ⁻²	3.19	10.69	35.88	120.00	402.00

Exercise 6

For the system Pt /Fe³+, Fe²+ at 298K the i were measured as shown below: Determine α and i_0

η/mV	-50	-80	-100	-120	-150	-200
i / mA·cm⁻²	-8.01	-16.1	-25.17	-41	-82.4	-264
η/mV	50	80	100	120	150	200
i / mA·cm ⁻²	5.50	8.78	11.91	16.30	26.00	56.60

Exercise 9

The exchange current density of Pt /Fe $^{3+}$, Fe $^{2+}$ is 2.5 mA $^{\cdot}$ cm $^{-2}$.

Calculate the current density across the electrode at 25 °C maintained at 1 V when [Fe $^{2+}$] = 0.1 M and [Fe $^{+3}$] = 0.2 M

(Standard reduction potential = 0.771 V, $\beta = 0.58$)